

wendelin.core effortless out-of-core NumPy

2014-04-03 - Paris

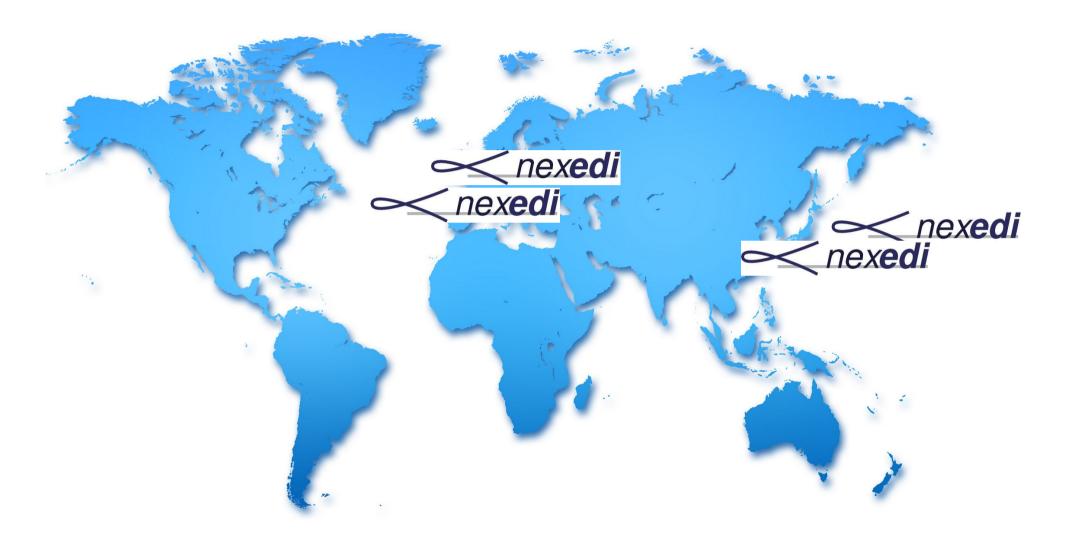
Who am I?

- Kirill Smelkov
- Senior developer at Nexedi
- Author of wendelin.core
- Contributor to linux, git and scientific libraries from time to time
- kirr@nexedi.com

Agenda

- Where do we come from
- Five problems to solves
- The solution
- Future Roadmap

Where do we come from?

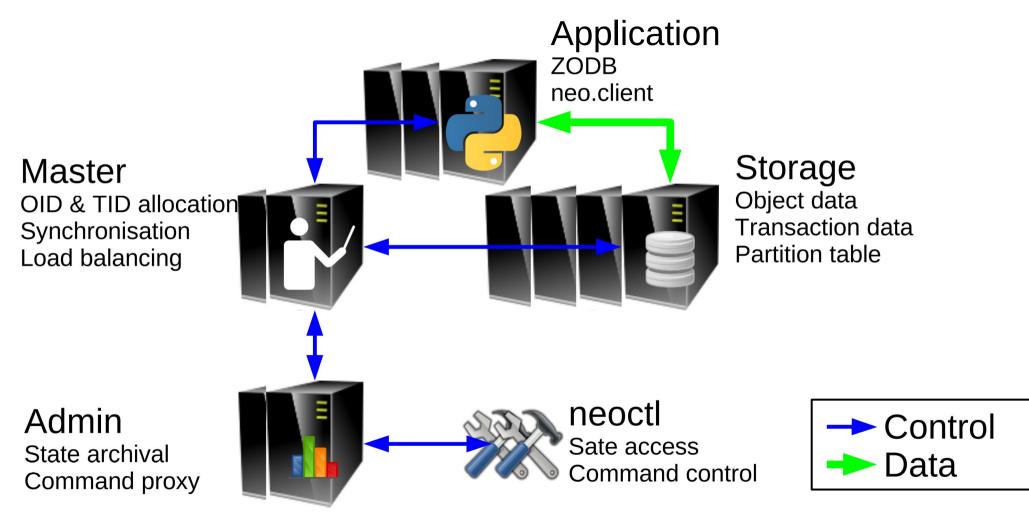


© 2015 Nexedi

Nexedi

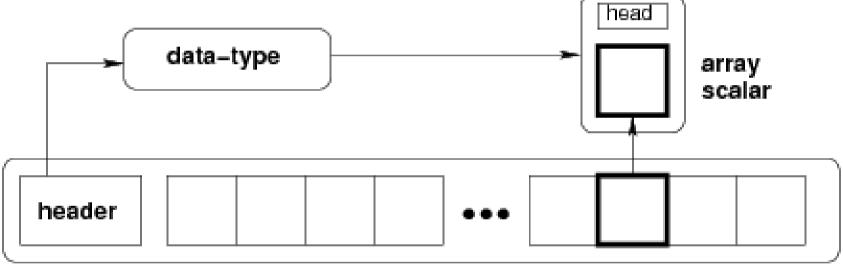
- Possibly Largest OSS Publisher in Europe
 - ERP5: ERP, CRM, ECM, e-business framework
 - SlapOS: distributed mesh cloud operation system
 - NEO: distributed transactional NoSQL database
 - Wendelin: out-of-core big data based on NumPy
 - re6st: resilient IPv6 mesh overlay network
 - RenderJS: javascript component system
 - JIO: javascript virtual database and virtual filesystem
 - cloudooo: multimedia conversion server
 - Web Runner: web based Platform-as-a-Service (PaaS) and IDE
 - OfficeJS: web office suite based on RenderJS and JIO

WEINPARIS.COM BY ZAWEE


Application Convergence

ERP5 Storage: NEO

Standard Hardware no router / no SAN


Five Problems to Solve

WENDELIN

© 2015 Nexedi

It is All About NumPy

ndarray

Problem 1: Persistent NumPy

- How to store NumPy arrays in a database?
 - in NEO?
 - in NoSQL?
 - in SQL?

Problem 2: Distributed NumPy

- How to share NumPy arrays in a cluster?
 - One PC, many Python processes
 - Many PC, many Python processes

Problem 3: Out-of-core NumPy

- How to load big NumPy arrays in small RAM?
 - ERP5: "it should work even if it does not work"
 - Stopping business is not an option (because of not enough RAM)

Problem 4: Transactional NumPy

- How to make NumPy arrays transaction safe?
 - Exception handling
 - Concurrent writes
 - Distributed computing

Problem 5: Compatibility

- Compatibility with NumPy-based stack is a must
- Native BLAS support is a must
- Cython/FORTRAN/C/C++ support is a must
- Code rewrite is not an option
 - Blaze: not NumPy compatible below Python level
 - Dato: not NumPy compatible

© 2015 Nexedi

Unsolutions

- Update NumPy & libraries with calling notification hooks when memory is changed
 → not practical
 - There is a lot of code in numpy and lot of libraries around numpy
 - Catching them all would be a huge task
- Compare array data to original array content at commit time and store only found-to-bechanged parts → not good
 - At every commit whole array data has to be read/analyzed and array data can be very big

Remember mmap? READ

- Region of memory mapped by kernel to a file
- Memory pages start with NONE protection \rightarrow CPU can not read nor write
- Whenever read request comes from CPU, kernel traps it (thanks to MMU), loads content for that page from file, and resumes original read

Remember mmap? WRITE

- Whenever write request comes from CPU, kernel traps it, marks the page as DIRTY, unprotects it and resumes original write
 → kernel knows which pages were modified
- Whenever application wants to make sure modified data is stored back to file (msync), kernel goes over list of dirty pages and writes their content back to file

Partial Conclusion

 If we manage to represent arrays as files, we'll get "track-changes-to-content" from kernel

FUSE ?

- FUSE & virtual filesystem representing "glued" arrays from ZODB BTree & objects
- Problem 1: does not work with huge pages
 - Performance issues
 - Not easy to fix
- Problem 2: no support for commit / abort
 - Transaction issues

UVMM: Userspace Virtual Memory Manager

 Trap write access to memory via installing SIGSEGV signal handler

UVMM ON CPU WRITE

- SIGSEGV handler gets notified,
- Marks corresponding array block as dirty
- Adjust memory protection to be read-write
- Resumes write instruction
- \rightarrow we know which array parts were modified

UVMM ON CPU READ

- Set pages initial protection to PROT_NONE
 → no-read and no-write
- First load in SIGSEGV handler
- When RAM is tight, we can "forget" already loaded (but not-yet modified) memory parts and free RAM for loading new data

UVMM LIMITS ?

- Array size is only limited by virtual memory address space size
 - → 127TB on Linux/amd64 (today)
- Future Linux kernel may support more

Is it safe to do work in SIGSEGV handler?

- Short answer: YES
- Long answer: www.wendelin.io

Tutorial: init a BigFile backend

f = BigFile_SomeBackend(...)

BigFile Handle: BigFile as Memory

```
# BigFile handle is a representation of file snapshot that could be locally
# modified in-memory. The changes could be later either discarded or stored
# back to file. One file can have many opened handles each with its own
# modifications.
fh = f fileb open()
```

```
fh = f.fileh_open()
```

```
# memory mapping of fh
vma = fh.mmap(pgoffset=0, pglen=N)
```

```
# vma exposes memoryview/buffer interfaces
mem = memoryview(vma)
```

```
# now we can do with `mem` whatever we like
```

. . .

```
fh.dirty_discard()  # to forget all changes done to `mem` memory
fh.dirty_writeout(...) # to store changes back to file
```


ZBigFile: ZODB & Transactions

from webdelin.bigfile.file_zodb import ZBigFile
import transaction

BigArray: "ndarray" on top of BigFile

```
# f - some BigFile
# n - some (large) number
fh = f.fileh open()  # handle to bigfile (see slide ...)
A = BigArray(shape=(n,10), dtype=uint32, fh)
a = A[0:3*(1<30), :] # real ndarray viewing first 3 giga-rows (= ~120GB) of
                        # data from f
                        # NOTE 120GB can be significantly > of RAM available
a.mean()
                       # computes mean of items in above range
                        # this call is just an ndarray.mean() call and code
                        # which works is the code in NumPy.
                        # NOTE data will be loaded and freed by virtual memory
                       # manager transparently to client code which computes
                        # the mean
```


BigArray: Transactions

```
a[2] = ...
fh.dirty_discard()  # to discard, or
fh.dirty_writeout()  # to write
```


ZBigArray: ZODB & Transactions

```
from wendelin.bigarra.array_zodb import ZbigArray
import transaction
```

```
# root is connection to oped database
root['sensor_data'] = A = ZBigArray(shape=..., dtype=...)
```

```
# populate A with data A[2] = 1
```

```
# compute mean
A.mean()
```

```
# abort / commit changes
transaction.abort()
transaction.commit()
```


NEO and ZBigArray

ZBigArray											
1	2	3	4	5	6	7	8	9	10	11	12
								MariaDB			
1			2			3			4		
5			6			7			8		
9			10			11			12		

Future Improvements

- Temporary arrays created by NumPy libraries
- Performance
- Multithreading

Future Roadmap

WENDELIN

Roadmap

www.wendelin.io

- Make wendelin.core fast \bullet
 - userfaultfd, filesystem-based approach
 - remove use of pickles
 - remove large temporary arrays in NumPy, etc.
- Yet, you can start using wendelin.core now!
 - Persistent
 - Distributed
 - **Out-of-core**
 - Transactional
- Virtually no change to your code needed
- **Open Source**

wendelin.core effortless out-of-core NumPy

2014-04-03 - Paris

wendelin.core effortless out-of-core NumPy

2014-04-03 - Paris

Who am I?

- Kirill Smelkov
- Senior developer at Nexedi
- Author of wendelin.core
- Contributor to linux, git and scientific libraries from time to time
- kirr@nexedi.com

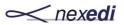
© 2015 Nexedi

Agenda

- Where do we come from
- Five problems to solves
- The solution
- Future Roadmap

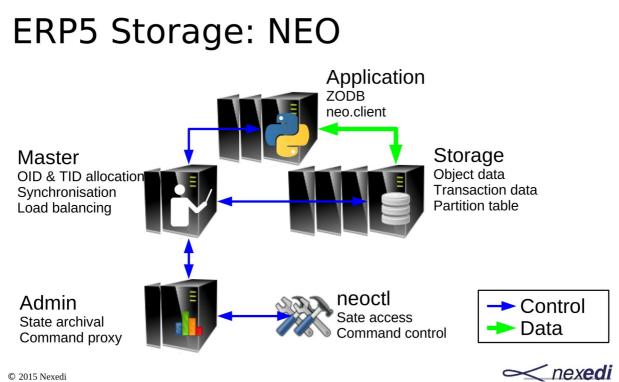
© 2015 Nexedi

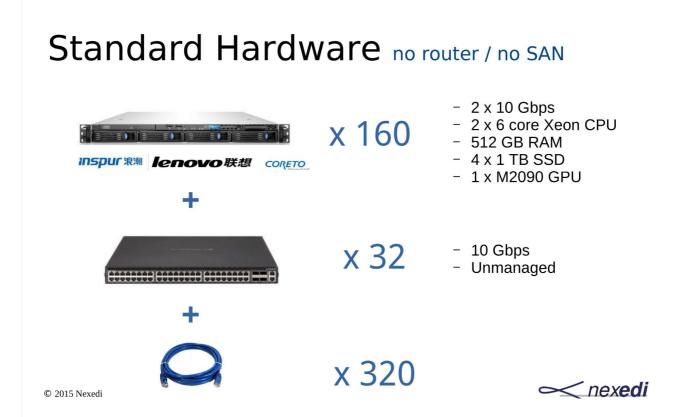
Where do we come from?

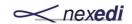


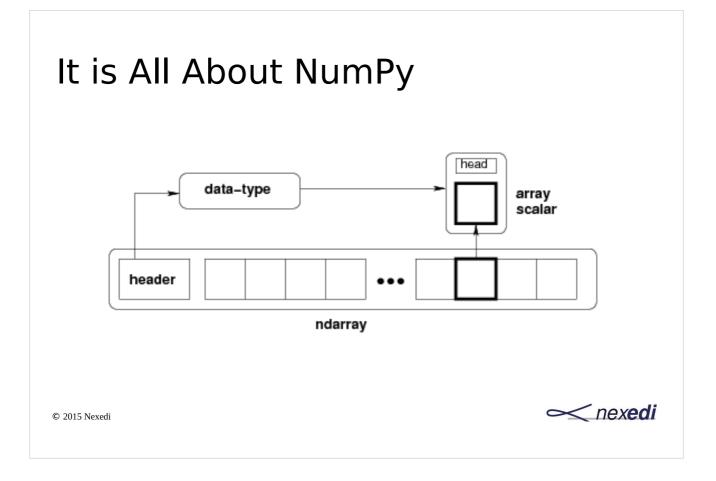
Nexedi

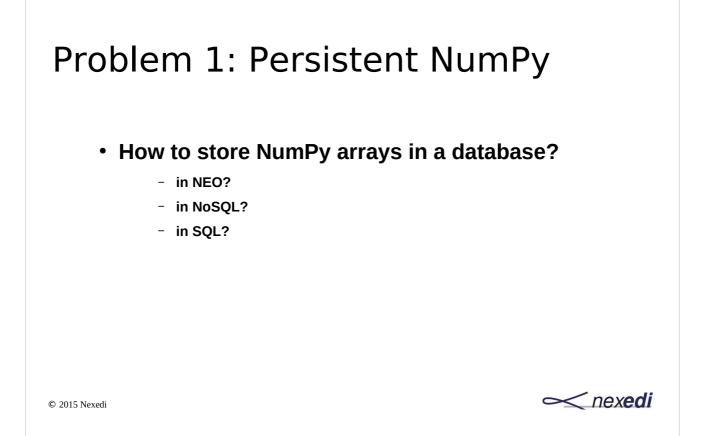
• Possibly Largest OSS Publisher in Europe


- ERP5: ERP, CRM, ECM, e-business framework
- SlapOS: distributed mesh cloud operation system
- NEO: distributed transactional NoSQL database
- ➢ Wendelin: out-of-core big data based on NumPy
- re6st: resilient IPv6 mesh overlay network
- RenderJS: javascript component system
- JIO: javascript virtual database and virtual filesystem
- cloudooo: multimedia conversion server
- Web Runner: web based Platform-as-a-Service (PaaS) and IDE
- OfficeJS: web office suite based on RenderJS and JIO





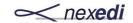


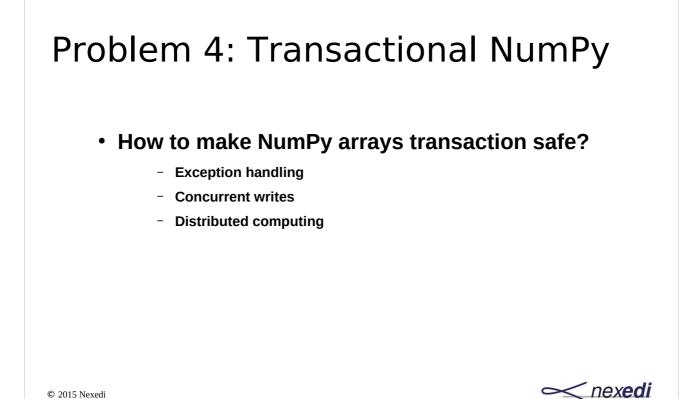


Five Problems to Solve

Problem 2: Distributed NumPy

• How to share NumPy arrays in a cluster?


- One PC, many Python processes
- Many PC, many Python processes



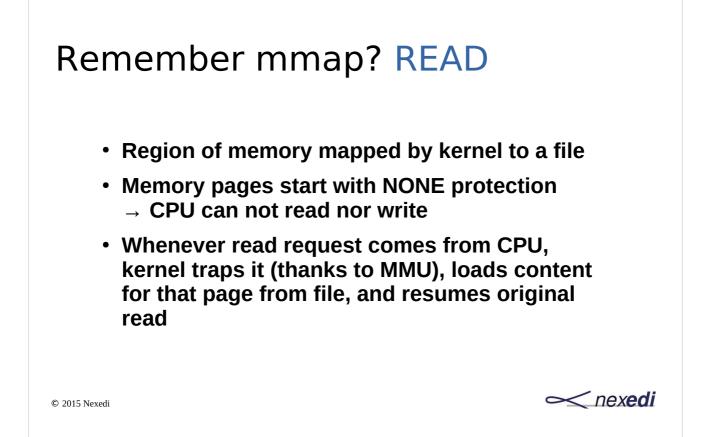
Problem 3: Out-of-core NumPy

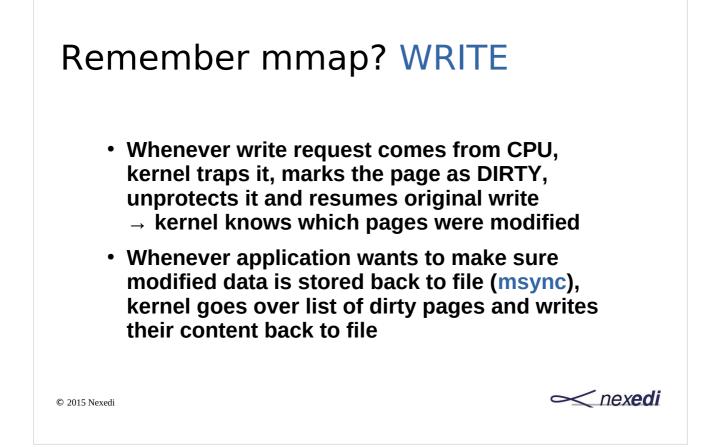
How to load big NumPy arrays in small RAM?

- ERP5: "it should work even if it does not work"
- Stopping business is not an option (because of not enough RAM)

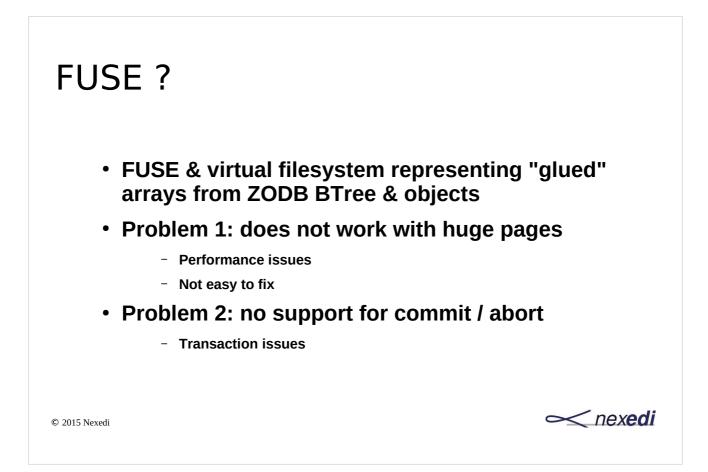
Problem 5: Compatibility

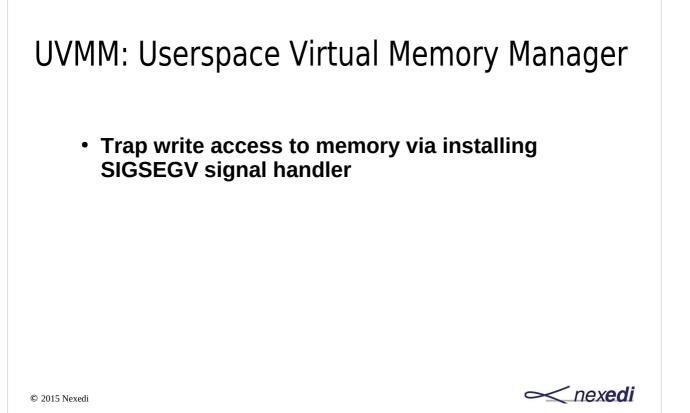

- Compatibility with NumPy-based stack is a must
- Native BLAS support is a must
- Cython/FORTRAN/C/C++ support is a must
- Code rewrite is not an option
 - Blaze: not NumPy compatible below Python level
 - Dato: not NumPy compatible



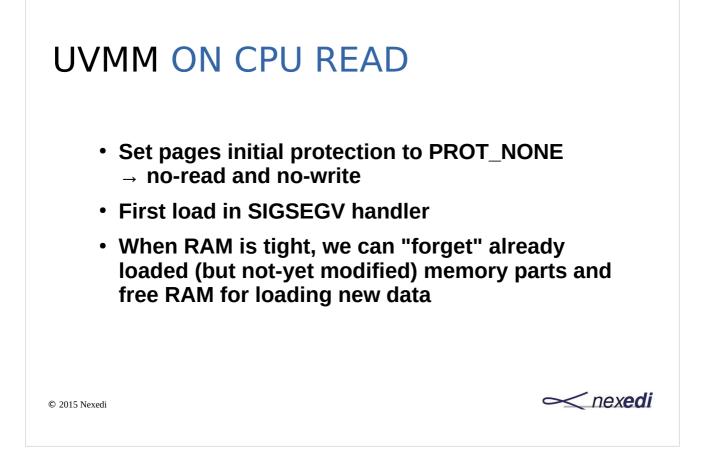


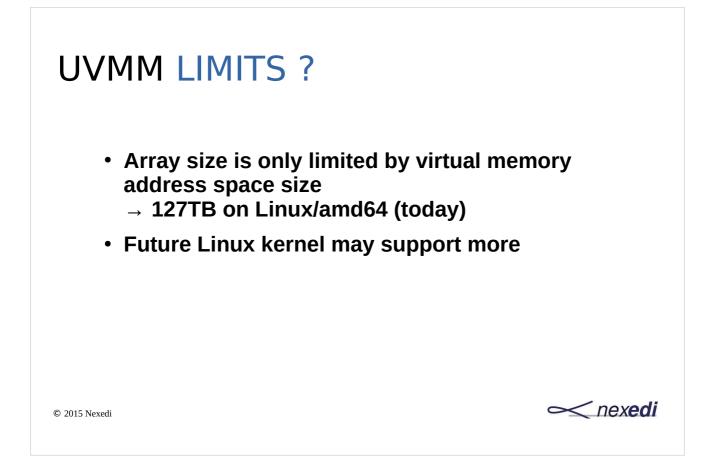
WENDELIN





<section-header><section-header><section-header><section-header><section-header><text>





UVMM ON CPU WRITE

- SIGSEGV handler gets notified,
- Marks corresponding array block as dirty
- Adjust memory protection to be read-write
- Resumes write instruction
- \rightarrow we know which array parts were modified

© 2015 Nexedi

Is it safe to do work in SIGSEGV handler?

- Short answer: YES
- Long answer: www.wendelin.io

© 2015 Nexedi

Tutorial: init a BigFile backend

© 2015 Nexedi

BigFile Handle: BigFile as Memory

BigFile handle is a representation of file snapshot that could be locally # modified in-memory. The changes could be later either discarded or stored # back to file. One file can have many opened handles each with its own # modifications. fh = f.fileh_open()

memory mapping of fh
vma = fh.mmap(pgoffset=0, pglen=N)

vma exposes memoryview/buffer interfaces
mem = memoryview(vma)

now we can do with `mem` whatever we like
...
fh.dirty_discard() # to forget all changes done to `mem` memory
fh.dirty_writeout(...) # to store changes back to file

© 2015 Nexedi

ZBigFile: ZODB & Transactions

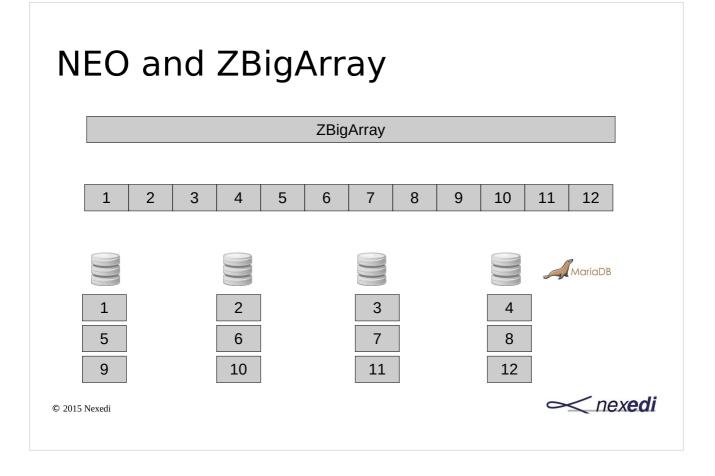
```
© 2015 Nexedi
```


BigArray: "ndarray" on top of BigFile

© 2015 Nexedi

BigArray: Transactions

a[2] = ... fh.dirty_discard() # to discard, or fh.dirty_writeout() # to write


© 2015 Nexedi

── nex**edi**

ZBigArray: ZODB & Transactions

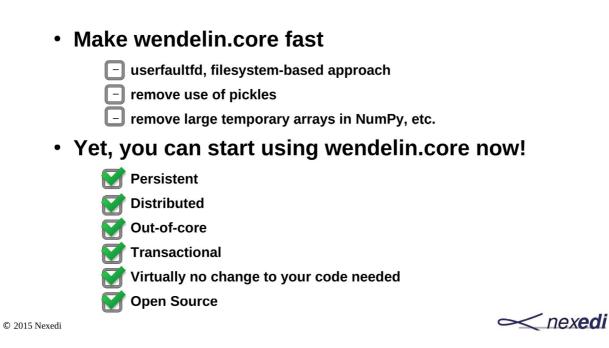
from wendelin.bigarra.array_zodb import ZbigArray
import transaction
root is connection to oped database
root['sensor_data'] = A = ZBigArray(shape=..., dtype=...)
populate A with data
A[2] = 1
compute mean
A.mean()
abort / commit changes
transaction.abort()
transaction.commit()

© 2015 Nexedi

Future Improvements

- Temporary arrays created by NumPy libraries
- Performance
- Multithreading

© 2015 Nexedi


Future Roadmap

Roadmap

www.wendelin.io

www.wendelin.io

wendelin.core effortless out-of-core NumPy

2014-04-03 - Paris

