
Industrial Automation

Who we are...

Dipl.-Ing. Markus Kohlhase

Dipl.-Inform. Uwe Klotz

M.Sc. David Ziegler

B.Sc. Enja Stein

M.Sc. Michel Sinn

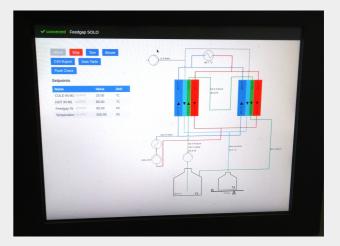
M.Sc. Daniel Sprenger

What we do...

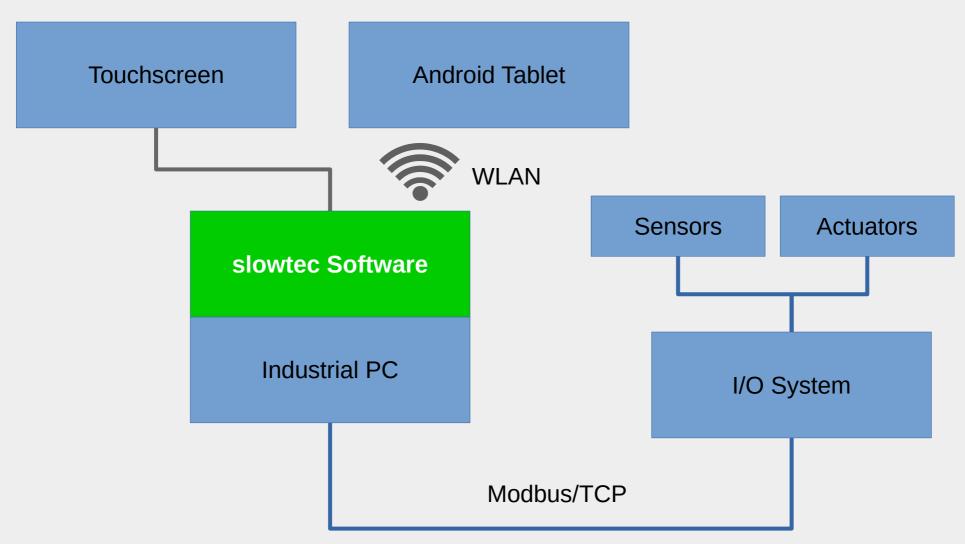
- Software Engineering
- Automation & Closed-loop Control
- Industrial 4.0
- (Web) App Development
- Product Prototyping
- Consulting

Some of our projects...

- Water treatment plants
 - Closed-loop control
 - HMI (Web app)
- Solar power plants
- Irrigation systems
 - Product design
 - Software development
 - I/O System engineering (Partner: Relumity)
- Laboratory software
- Geo. information system



An industrial use case...



- ~ 40 Sensors
- ~ 15 Actuators

Architecture

Open Hardware

(Our experiences so far)

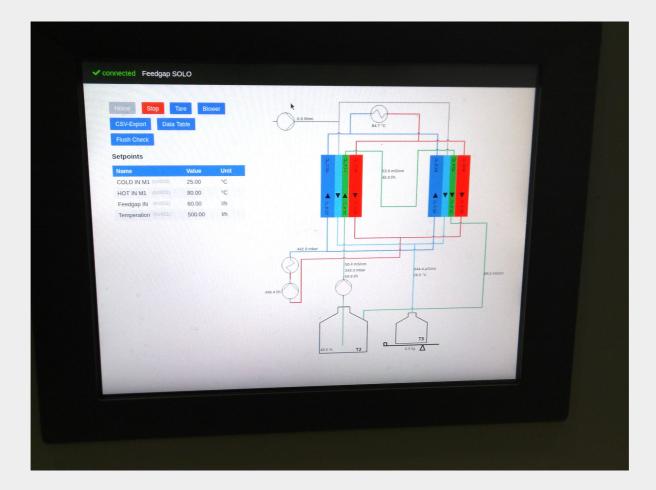
- I/O System
 - IndustrialShields ← No RTD, bad materials
 - Kunbus ← No AO/AI in 2016
- Industrial PC
 - Raspberry Pi ← not reliable
 - Odroid ← not working with higher temperatures
 - IndustrialShields ← no Linux
 - Olimex ? ← no experiences so far

I/O System & Industrial PC (Proprietary)

Our own open embedded industrial I/O board powered by Linux & Rust

- MIPS @ 1 GHz
- 128 MB RAM
- 32 MB Flash

Our partner: Relumity, Stuttgart



Some insights...

HMI (Touchscreen with WebApp)

What is NixOS?

NixOS is a Linux distribution with a unique approach to package and configuration management. It is **completely declarative**, makes upgrading systems **reliable.**

What is Rust?

Rust is an **open source** systems programming language with a focus on **safety**.

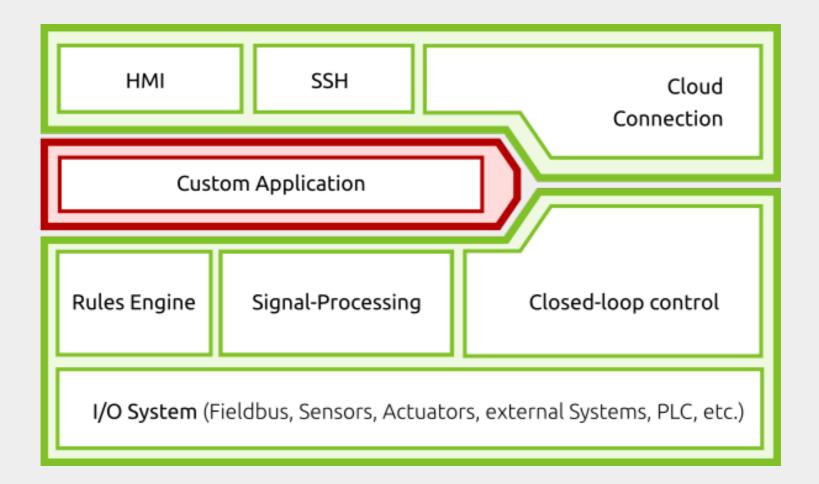
Why Rust?

Reliability Why does this still happen in 2018?

panic: runtime error: invalid memory address or nil pointer dereference [signal SIGSEGV: segmentation violation code=0x1 addr=0x20 pc=0x40142f]

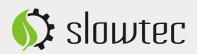
...or even worse: Undefined behavior 🛞

Security Languages like C can't prevent those kind of memory "leaks"



Rust matches our requirements

- Reliability
- Security
- Predictability (hard-realtime)
- Efficiency & Performance
- Productivity
- Maintenance / Long Term Support
- Open Source
- Cross-platform / Embedded / Bare Metal
- Deployment


slowtec open industrial IoT stack

Super fast, small, efficient

- Integrated Server (HTTP, WebSocket, ...)
- Embedded Web-Application
- One static linked binary
- 6 MB in total (2MB zipped)

How to build a controller without programming?

2. Configure your sensors / actuators

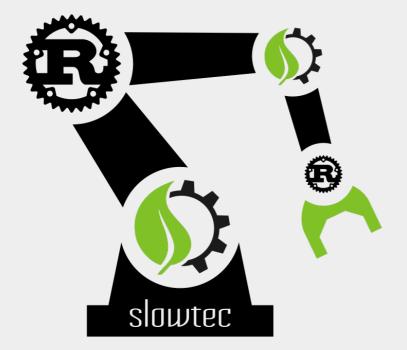
```
[inputs.fcr001]
  title = "Temperation"
  unit = "l/h"
  crop = { low = 0.0 }
  [inputs.fcr001.scale]
    from = { low = 4.0, high = 20.0 }
    to = { low = 0.0, high = 100.0 }
[outputs.p1]
  title = "Temperation pump P1"
  [outputs.p1.scale]
    from = { low = 0.0, high = 100.0 }
    to = { low = 0.0, high = 5.0 }
```


3. Define your controllers

```
[controllers.condensor_temp]
 <u>input = "tcr003"</u>
 output = "h1"
  [controllers.condensor_temp.pid]
    p = 2.0
   i = 0.003
   d = 0.1
   i_{max} = 80.0
   max = 90.0
   min = 30.0
  [controllers.condensor_temp.setpoint]
   constraint = { min = 20.0, max = 45.0 }
   Default = 25.0
```


4. Run & have fun!

\$ slowtec-iot config.toml



Other features

- Rules / Actions
- State Machines
- Recording
- etc.

Thank you!

https://www.slowtec.de https://github.com/slowtec

